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Abstract
Moving from the mirror theory Bethe–Yang equations proposed by Arutyunov
and Frolov, we derive the thermodynamic Bethe ansatz equations which should
control the spectrum of the planar AdS5/CFT4 correspondence. The associated
set of universal functional relations (Y-system) satisfied by the exponentials
of the TBA pseudoenergies is deduced, confirming the structure inferred by
Gromov, Kazakov and Vieira.

PACS numbers: 05.50.+q, 02.30.Ik

1. A bird’s-eye view between integrability and AdS/CFT

A very peculiar phenomenon in modern theoretical physics has been taking place at the
encounter of two branches: on one side the subject of quantum/statistical two-dimensional
integrability [1] and on the other the gauge/string correspondences [2] in their planar case.
Actually, the entrance of integrability into the realm of reggeised gluons of infinite colour
QCD in its leading logarithmic approximation was already observed by Lipatov in [3].

More specifically, the AdS/CFT conjecture relates, by a strong/weak coupling duality,
a type IIB superstring theory on the curved spacetime AdS5 × S5 and the conformal N = 4
super-Yang–Mills (SYM) theory in four dimensions on the boundary of AdS5 [2]. As a
consequence and particular case, the energy of a specific string state ought to be equal to the
anomalous dimension of the corresponding local gauge invariant operator in the quantum field
theory. Yet, the mechanism of integrability in this triadic relation is not fully understood. For
sure, the discovery of integrability in the classical string theory was a great achievement [4],
both from the conceptual and the practical (i.e. calculative) points of view.

On the SYM theory side of the correspondence, the large colour number limit N → ∞
is taken keeping the ’t Hooft coupling Ng2

YM = λ = 4π2g2 finite, with g proportional to free
string tension. In this limit only the planar Feynman diagrams and single trace composite
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operators survive. Besides the pioneering interpretation of [5] in terms of an sl(2) spin chain
(in the QCD case), the constituent operators in the purely scalar sector at one loop have
been unveiled to correspond to the degrees of freedom of an integrable so(6) spin chain, thus
making the mixing matrix (or dilatation operator) to coincide with this integrable so(6) spin
Hamiltonian [6]. Being integrable, the spectrum of this Hamiltonian comes out by means of
the Bethe ansatz (BA) (in one of its various forms) [1] and described by the so-called Bethe
ansatz equations for the ‘rapidities’ which parametrize the operators in the trace. Albeit a
description of the dilatation operator at all loops as a spin chain Hamiltonian is still missing,
the integrability has been showing up in the form of spin-chain-like Bethe equations (for
g dependent rapidities still parametrizing the operators in the trace, likewise to the one-
loop case), which are valid at least in the asymptotic regime of large quantum numbers (cf
below). Eventually, a set of equations for the whole theory has been proposed by Beisert
and Staudacher [7]. Computationally, the BA energy, E(g), yields the anomalous part of the
conformal dimension:

� = �bare + g2E(g), (1.1)

where �bare is the bare or classical dimension. As said before, this quantity must also be given
by the quantum energy of a suitable string state (Estring = �). By a semiclassical procedure
on the string sigma model, this fact has opened a road to fix a phase factor, the so-called
dressing factor, entering the Bethe equations and the S-matrix [8–11]. Of course, �, �bare

and E(g) may depend also on other quantum numbers, such as the spin chain length L, which
also plays the role of a string angular momentum, other angular momenta, the Lorentz spin
s, etc. Yet, the Beisert–Staudacher equations enjoy a validity seriously restricted by their
scattering matrix origin, namely the length L and other quantum numbers need to be large.
More precisely, starting from a certain loop order these equations are plagued by the so-called
wrapping problem [12, 13]. Nevertheless, as scattering S-matrix equations [14], they are
indeed correct and they can be interpreted as Bethe–Yang quantization conditions [15,16].

In quantum integrable 2D relativistic massive field theories, the problem of deriving off-
shell quantities from on-shell information has been already addressed in many cases. For the
purpose of this paper the derivation by Al B Zamolodchikov of the finite-size ground-state
energy from the S-matrix [26] is relevant. Let us define the theory on a torus spacetime
geometry. The space direction is finite with circumference L, time is periodic with period
R → ∞. Zamolodchikov’s fascinating idea is to exchange space and time by defining a
mirror theory in the infinite space R. In this mirror theory the space interval is infinite and the
asymptotic Bethe–Yang equations hold true, but time is compact with size L. Now, we may
interpret L = 1/T as the inverse temperature and use the Yang–Yang thermodynamic Bethe
ansatz (TBA) procedure [23] to find the minimum free energy or equivalently the ground-
state energy for the (original) direct theory on a space circumference with size L. In the
following, we will extend this procedure to the non-relativistic case relevant for the AdS/CFT
correspondence.

We have been convinced that this strategy may be successful also in a complicated non-
relativistic theory such as the AdS/CFT correspondence by the recent striking confirmation
due to a sort of ancestor of the TBA for relativistic quantum field theory. In fact, Lüscher
developed a method to compute, from scattering data, the finite-size corrections to the mass
gap [17]. Later on, this method was specifically applied to integrable quantum field theories
[18] and revealed itself as the leading term in the TBA large size expansion [29, 30]. Recently,
a sophisticated extension of these ideas to the AdS/CFT correspondence has given striking
results for the Konishi operator at four loops [19] and an impressive confirmation of the
perturbative computations of [20].
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In this paper, we will start from the equations recently formulated by Arutyunov and Frolov
in [21] for the mirror theory of the AdS5 × S5 superstring theory. These equations are derived
by implementing the classification of all the particles and bound states in the Bethe–Yang
equations derived in [22]. The classification is obtained with the formulation of the so-called
string hypothesis of the Hubbard model (cf [24]): the map of the direct theory equations [15]
into those of Hubbard’s was already observed by Beisert [16]. Initially, we will modify the
equations—in analogy with those of the Hubbard model [24]—so that we can take into account
the information on the so-called k − � strings. In this way, we produce a complete set of
string equations for implementing the thermodynamic Bethe ansatz method and derive a set of
TBA equations for the single particle dressed energies (the pseudoenergies). As a conclusion,
the pseudoenergies determine the (free) energy via a nonlinear integral functional. We shall
make explicit the similarity between our TBA equations and those for the Hubbard model and
then derive a universal system of functional relations (the Y-system) for the exponential of the
pseudoenergies. The universality of a Y-system consists in the fact that, at least for relativistic
theories, it is the same for the excited states as well. Yet, there is by now a consolidated way
towards excited states in relativistic massive field theories [29–31]. A very brief description
of this procedure for the present case will be sketched in the final section, with the aim to
gain a better control of the energy/dimension spectrum of the AdS5/CFT4 correspondence for
any value of the coupling constant g and even for short operators. Apparently, the Y-system
structure matches that recently proposed by Gromov, Kazakov and Vieira [37].

2. The equations for the root densities

As anticipated before, we need to pass from the AdS5 × S5 theory defined on a circumference
of length L to its mirror, and this has been extensively investigated by Arutyunov and Frolov
since the paper [22]. In particular, they derive from the S-matrix the Bethe–Yang equations
for the fundamental particles of the mirror theory:

eĩpkR =
K I∏
l=1
l �=k

(S0(p̃k, p̃l))
2

2∏
α=1

K II
(α)∏

l=1

x+
k − y

(α)
l

x−
k − y

(α)
l

√
x−

k

x+
k

,

−1 =
K I∏
l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√
x−

l

x+
l

K III
(α)∏

l=1

v
(α)
k − w

(α)
l + i

g

v
(α)
k − w

(α)
l − i

g

, (2.1)

1 =
K II

(α)∏
l=1

w
(α)
k − v

(α)
l − i

g

w
(α)
k − v

(α)
l + i

g

K III
(α)∏

l=1
l �=k

w
(α)
k − w

(α)
l + 2i

g

w
(α)
k − w

(α)
l − 2i

g

,

where

(
S0(p̃k, p̃l)

)2 = x−
k − x+

l

x+
k − x−

l

1 − 1
x+

k x−
l

1 − 1
x−

k x+
l

σ 2(xk, xl) (2.2)

is the a = 0 light-cone gauge scalar factor of the mirror S-matrix, with σ(xk, xl) the dressing
factor in the mirror theory [22], and only here for the single particle case x±

k = x
(
uk ± i

g

)
(cf appendix A for the definition of the function x(u)). Thanks to a so-far formal resemblance
of the last two BA equations (BAEs) with those of a inhomogeneous Hubbard model, they
can formulate a string hypothesis for the solutions, in strict analogy with the Takahashi’s
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one [24]. In few words, we assume that the thermodynamically relevant solutions3 of (2.1)
in the limit of large R,KI ,KII

(α), K
III
(α) rearrange themselves into complexes—the so-called

strings—with real centres and all the other complex roots symmetrically distributed around
these centres along the imaginary direction. Paying attention to the presence of two coupled
Hubbard models for α = 1, 2, the strings may be classified as follows:

(1) NQQ-particles (bound states) with real momenta p̃
Q
k and real rapidities u

Q
k :

u
Q,j

k = u
Q
k + (Q + 1 − 2j)

i

g
, j = 1, . . . ,Q; (2.3)

(2) N(α)
y y(α)-particles with real momenta q

(α)
k ;

(3) N
(α)
M|vvw-strings with real centres vM

k , 2M roots of type v and M of type w:

v
M,j

k = vM
k ± (M + 2 − 2j)

i

g
, j = 1, . . . ,M; (2.4)

w
M,j

k = vM
k + (M + 1 − 2j)

i

g
, j = 1, . . . ,M; (2.5)

(4) N
(α)
N |ww-strings with real centres wN

k and N roots of type w:

w
N,j

k = wN
k + (N + 1 − 2j)

i

g
, j = 1, . . . , N. (2.6)

If the variables uk, vk and wk in (2.1) are replaced by u
Q,j

k , v
M,j

k , w
M,j

k and w
N,j

k , and the
products on the internal string index j are made, then the equations for the real centres of the
various kinds of the above strings (2.3)–(2.6) can be recast into the following form [21]:

1 = eip̃Q
k R

∞∏
Q′=1

NQ′∏
l=1
l �=k

S
QQ′
sl(2)(xk, xl)

2∏
α=1

N
(α)
y∏

l=1

x−
k − y

(α)
l

x+
k − y

(α)
l

√
x+

k

x−
k

∞∏
M=1

N
(α)
M|vw∏
l=1

SQM
xv

(
xk, v

(α)
l,M

)
, (2.7)

−1 =
∞∏

Q=1

NQ∏
l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√
x−

l

x+
l

∞∏
M=1

N
(α)
M|vw∏
l=1

v
(α)
k − v

(α)−
l,M

v
(α)
k − v

(α)+
l,M

∞∏
N=1

N
(α)
N |w∏

l=1

v
(α)
k − w

(α)−
l,N

v
(α)
k − w

(α)+
l,N

, (2.8)

∞∏
Q=1

NQ∏
l=1

SQK
xv

(
xl, v

(α)
k,K

) =
∞∏

M=1

N
(α)
M|vw∏
l=1

SKM
vv

(
v

(α)
k,K, v

(α)
l,M

) ∞∏
N=1

N
(α)
N |w∏

l=1

SKN
vw

(
v

(α)
k,K,w

(α)
l,N

)
, (2.9)

(−1)K =
N

(α)
y∏

l=1

w
(α)−
k,K − v

(α)
l

w
(α)+
k,K − v

(α)
l

∞∏
N=1

N
(α)
N |w∏

l=1

SKN
ww

(
w

(α)
k,K,w

(α)
l,N

)
, (2.10)

where, for the sake of shortness, notation changes from now on in that all the particle x-variables
have to be read

x±
k ≡ x

Q±
k = x

(
u

Q
k ± i

Q

g

)
, (2.11)

3 There is no definitive proof of the string hypothesis, though it seems to always give the correct thermodynamic
limit. There might well be other kinds of solutions (which should not affect the thermodynamics).
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and the definitions of the particle (i.e. subscripts k and l) variables x(u), v, v±
K and w±

K

(suppressing the index α) are listed in appendix A. The S-matrices are defined as follows:

S
QQ′
sl(2)(xk, xl) =

⎡⎣ Q∏
j=1

Q′∏
h=1

(
x(uk + i(Q + 2 − 2j)/g) − x(ul + i(Q′ − 2h)/g)

x(uk + i(Q − 2j)/g) − x(ul + i(Q′ + 2 − 2h)/g)

)
(

1 − 1
x(uk+i(Q−2j)/g)x(ul+i(Q′+2−2h)/g)

1 − 1
x(uk+i(Q+2−2j)/g)x(ul+i(Q′−2h)/g)

)⎤⎦ σQ,Q′(uk, ul)
−2, (2.12)

SQM
xv (xk, vl,M) =

(
x

Q−
k − x(v+

l,M)

x
Q+
k − x(v+

l,M)

)(
x

Q−
k − x(v−

l,M)

x
Q+
k − x(v−

l,M)

)(
x

Q+
k

x
Q−
k

)

×
M−1∏
j=1

(
uk − vl,M − iQ−M + 2j

g

uk − vl,M + iQ−M + 2j

g

)
,

SKM
vv (x, y) = SKM

vw (x, y) = SKM
ww (x, y) = SKM(x − y),

SKM(u) =
(

u + i |K−M|
g

u − i |K−M|
g

)(
u + iK + M

g

u − iK + M
g

)
min(K,M)−1∏

k=1

(
u + i |K−M|+2k

g

u − i |K−M|+2k

g

)2

, (2.13)

where S
QQ′
(2) (xk, xl) is obtained from

(
S0(p̃k, p̃l)

)2
by the fusion procedure [45, 46], with

the upper index (length) of the string centre (Q in (2.3)) suppressed. Now, a simple crucial
observation enters the stage: the last term on the rhs of (2.9) fails the resemblance with the
usual Hubbard BAEs implemented by string hypothesis [24, 25]. In fact, we need one more
step: we can easily see that the equation for the vw strings—corresponding to the Hubbard
k − � strings—do not have on the rhs a term of interaction between the w and vw strings; in
contrast, there is a scattering term between a vw string and a single v(α) (which do not belong
to any string, but its own). Therefore, we may derive an intermediate equation

−1 =
N

(α)
y∏

l=1

w
(α)
k − v

(α)
l − i

g

w
(α)
k − v

(α)
l + i

g

∞∏
N=1

N
(α)
N |w∏

l=1

w
(α)
k − w

(α)−
l,N + i

g

w
(α)
k − w

(α)+
l,N + i

g

w
(α)
k − w

(α)−
l,N − i

g

w
(α)
k − w

(α)+
l,N − i

g

, (2.14)

and choose w
(α)
k belonging to a vw-string. With this little trick4, we obtain

∞∏
N=1

N
(α)
N |w∏

l=1

SKN
vw

(
v

(α)
k,K,w

(α)
l,N

) = (−1)K
N

(α)
y∏

l=1

v
(α)+
k,K − v

(α)
l

v
(α)−
k,K − v

(α)
l

, (2.15)

and finally we can rewrite (2.9) in a form re-echoing the Hubbard one:

∞∏
Q=1

NQ∏
l=1

SQK
xv

(
xl, v

(α)
k,K

) =
∞∏

M=1

N
(α)
M|vw∏
l=1

SKM
vv

(
v

(α)
k,K, v

(α)
l,M

) ∞∏
N=1

N
(α)
y∏

l=1

SK
vy

(
v

(α)
k,K, v

(α)
l

)
. (2.16)

In (2.16) we have introduced a new scattering matrix

SK
vy

(
v

(α)
k,K, v

(α)
l

) = v
(α)+
k,K − v

(α)
l

v
(α)−
k,K − v

(α)
l

= v
(α)
k,K − v

(α)
l + iK/g

v
(α)
k,K − v

(α)
l − iK/g

. (2.17)

At this point, we can follow the standard TBA procedure [23–26], which goes in a very
sketchy way as follows. After taking the logarithm of these equations, we shall consider the

4 After the first version of this paper appeared on the arXiv, this trick was implemented in a revised version of [21].
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thermodynamic limit (KI ,N(α)
y , N(α)

vw ,N(α)
w , R → ∞) while keeping the densities finite (sums

of root and hole densities, respectively)

ρQ(p̃) = ρr
Q(p̃) + ρh

Q(p̃) = lim
R→∞

I
Q
k+1 − I

Q
k

R
(
p̃

Q
k+1 − p̃

Q
k

) , (2.18)

ρα
y (q) = ρrα

y (q) + ρhα
y (q) = lim

R→∞
I ′α

k+1 − I ′α
k

R
(
q

(α)
k+1 − q

(α)
k

) , (2.19)

ρα
v,K(λ) = ρrα

v,K(λ) + ρhα
v,K(λ) = lim

R→∞
JKα

k+1 − JKα

k

R
(
λ

(α)
k+1 − λ

(α)
k

) , (2.20)

ρα
w,K(λ) = ρrα

w,K(λ) + ρhα
w,K(λ) = lim

R→∞
J ′Kα

k+1 − J ′Kα

k

R
(
λ

(α)
k+1 − λ

(α)
k

) , (2.21)

where the Is and the J s are the integer and half-integer quantum numbers, respectively.
Eventually, we can produce for the thermodynamic state the following integral equations
constraining the densities:

ρQ(p̃) = 1

2π
+

∞∑
Q′=1

(
φ

QQ′
sl(2) ∗ ρr

Q′
)
(p̃) +

2∑
α=1

[(
φQ

xy ∗ ρrα
y

)
+

∞∑
M=1

(
φQM

xv ∗ ρrα
v,M

)]
(p̃), (2.22)

ρα
y (q) =

∞∑
Q=1

(
φQ

yx ∗ ρr
Q

)
(q) +

∞∑
M=1

(
φM

yv ∗ ρrα
v,M

)
(q) +

∞∑
N=1

(
φN

yw ∗ ρrα
w,N

)
(q), (2.23)

ρα
v,K(λ) =

∞∑
M=1

(
φKM

vv ∗ ρrα
v,M

)
(λ) +

(
φKQ

vx ∗ ρr
Q

)
(λ) +

(
φK

vy ∗ ρrα
y

)
(λ), (2.24)

ρα
w,K(λ) =

∞∑
M=1

(
φKM

ww ∗ ρrα
w,M

)
(λ) +

(
φK

wy ∗ ρrα
y

)
(λ), (2.25)

where the symbol * denotes the usual convolution (on the second variable) (φ ∗ g)(z) =∫
dz′φ(z, z′)g(z′) and the kernels are defined in appendix A5.

3. The thermodynamic Bethe ansatz equations

We continue our very sketchy presentation of the derivation of the TBA equations. For
this purpose, we express the entropy in terms of the hole and root densities6 (ρh and ρr ,
respectively)

S =
∞∑

Q=1

∫ ∞

−∞
dp̃
([

ρr
Q(p̃) + ρh

Q(p̃)
]

ln
[
ρr

Q(p̃) + ρh
Q(p̃)

]− ρr
Q(p̃) ln ρr

Q(p̃) − ρh
Q(p̃) ln ρh

Q(p̃)
)

+
2∑

α=1

∫ π

−π

dq
([

ρrα
y (q) + ρhα

y (q)
]

ln
[
ρrα

y (q) + ρhα
y (q)

]− ρrα
y (q) ln ρrα

y (q) − ρhα
y (q) ln ρhα

y (q)
)

5 We begin to note that here the kernels φ(z, z′) do not necessarily depend on the difference (z − z′).
6 Hereafter the integration measure dp̃ has to be interpreted as the Stieltjes measure dp̃

du
du, as p̃ depends on (the

parameters) Q and g as well.
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+
2∑

α=1

∞∑
M=1

∫ ∞

−∞
dλ
( [

ρrα
v,M(λ) + ρhα

v,M(λ)
]

ln
[
ρrα

v,M(λ) + ρhα
v,M(λ)

]
− ρrα

v,M(λ) ln ρrα
v,M(λ) − ρhα

v,M(λ) ln ρhα
v,M(λ)

)
+

2∑
α=1

∞∑
N=1

∫ ∞

−∞
dλ
( [

ρrα
w,N(λ) + ρhα

w,N(λ)
]

ln
[
ρrα

w,N(λ) + ρhα
w,N(λ)

]
− ρrα

w,N(λ) ln ρrα
w,N(λ) − ρhα

w,N(λ) ln ρhα
w,N(λ)

)
, (3.1)

and then minimize the free energy per unit length,

f (T ) = H̃ − T S, (3.2)

where H̃ is the mirror energy per unit length [22]:

H̃ = 2
∞∑

Q=1

∫ ∞

−∞
dp̃ arcsinh

(√
Q2 + p̃2

2g

)
ρr

Q(p̃). (3.3)

As stated before, then we ought to treat the temperature T of the mirror theory as the inverse
of the size L in the AdS/CFT: T = 1/L. The extremum condition δf = 0 under the
constraints (2.22)–(2.25) entails the final set of thermodynamic Bethe ansatz equations for the
pseudoenergies εA such that

εA = ln
ρh

A

ρr
A

,
1

eεA + 1
= ρr

A

ρA

, LA = ln(1 + e−εA), (3.4)

with the short indication of the collective index A for the different density labels. The
ground-state thermodynamic Bethe ansatz equations are

εQ(p̃) = 2L arcsinh

(√
Q2 + p̃2

2g

)
−

∞∑
Q′=1

(
φ

Q′Q
sl(2) ∗ LQ′

)
(p̃)

−
2∑

α=1

(
φQ

yx ∗ Lα
y

)
(p̃) −

2∑
α=1

∞∑
M=1

(
φMQ

vx ∗ Lα
v,M

)
(p̃), (3.5)

εα
y (q) = −

∞∑
Q=1

(
φQ

xy ∗ LQ

)
(q) −

∞∑
M=1

(
φM

wy ∗ Lα
w,M

)
(q)

−
∞∑

N=1

(
φN

vy ∗ Lα
v,N

)
(q), (3.6)

εα
v,K(λ) = −

∞∑
Q=1

(
φQK

xv ∗ LQ

)
(λ) − (φK

yv ∗ Lα
y

)
(λ)

−
∞∑

M=1

(
φMK

vv ∗ Lα
v,M

)
(λ), (3.7)

εα
w,K(λ) = −(φK

yw ∗ Lα
y

)
(λ) −

∞∑
M=1

(
φMK

ww ∗ Lα
w,M

)
(λ), (3.8)

with α = 1, 2, Q = 1, 2, . . . and K = 1, 2, . . . . Note that, apart from the specific form of
the kernels (see appendix A for their definitions), the TBA equations are similar in form to
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the density equations (2.22)–(2.25), provided we exchange ρ → −L. However, we should
stress that on our way from (2.22)–(2.25) to (3.5)–(3.8) we have made an abuse of notation
and changed definition for the convolution * moving on to the first variable

(φ ∗ g)(z) =
∫

dz′φ(z′, z)g(z′). (3.9)

When the kernel φ(z, z′) can be written only as an (even) function of the difference (z − z′),
as for example in the relativistic theories discussed in [26, 28], this change in the definition of
* can be avoided by keeping the convolution on the second variable. However, in the present
framework some of the kernels have a genuinely different functional dependence on the two
independent variables and this simplification is absent. Moreover, an important comment is
here on the integration limits: they are from −∞ to ∞ for the λ- and p̃-variables but from
−π to π for the q-variables.

As a concluding result, the minimal free energy for the mirror theory results by inserting
the TBA equations into the general (3.2) and is given by the following nonlinear functional of
the pseudoenergies εQ(u):

f (T ) = −T

∞∑
Q=1

∫ ∞

−∞

dp̃

2π
ln(1 + e−εQ(p̃)) = −T

∞∑
Q=1

∫ ∞

−∞

du

2π

dp̃

du
ln(1 + e−εQ(u)). (3.10)

Consequently, the ground-state energy for the AdS/CFT theory on a circumference with length
L = 1/T ought to satisfy the relation

E0(L) = Lf (1/L). (3.11)

As we have kept the total densities finite, it is natural to introduce chemical potentials μA.
This has been already finalized in relativistic theories by [28]. The TBA equations (3.5)–(3.8)
do not change their form, but for this simple replacement

LA = ln(1 + e−εA) → LA,λ = ln(1 + λAe−εA), (3.12)

involving the fugacities λA = eμA/T . Here, we would like to conjecture that their introduction
should be related to the zero energy of the ground state (independently of the value of T)
which is a half BPS protected state. It is a consequence of a result by [33], further developed
in [32] and in [34] that in particular N = 2 supersymmetric theories this size-invariant state
can be selected via a suitable tuning of the TBA fugacities. A plot describing this interesting
transition, as the fugacities approach these critical values, can be found in [35]. In our case
we expect zero energy as soon as the fugacities reach these values:

λQ = 1, λα
v,K = −1, λα

w,K = (−1)K+1, λα
y = −1 (α = 1, 2,K = 1, 2, . . .). (3.13)

Physically, this modification corresponds to the calculation of the Witten index. In (3.13),
the fermionic and bosonic character of the pseudoparticles is chosen following an analogy
with other scattering-matrix models and considering the evident Z2-symmetry of the TBA
equations. There are, of course, other possibilities. The vanishing of ground-state energy in
TBA models is a very delicate issue and we prefer to postpone this discussion to the near
future and in presence of analytic or numerical evidences.

3.1. A comparison with the Hubbard TBA equations

As the reader can see in appendix A, some kernels in (3.5)–(3.8) actually depend on the
difference of rapidities. Therefore, the convolution involving these kernels is a standard
‘difference’ convolution, i.e. (f ∗ g)(z) = ∫

dz′f (z − z′)g(z′). In other words, we may
rewrite equations (3.6)–(3.8) in a form that is closer to the TBA equations of the Hubbard

8
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model, as we might expect from the analogy at the level of Bethe ansatz equations. Of course,
we must leave untouched the terms really depending on the two different variables and think
of them as driving or forcing terms connecting the two Hubbard models. For this reason, we
move them on the lhs of the equations and write

εα
y (q) +

∞∑
Q=1

(
φQ

xy ∗ LQ

)
(q) =

∞∑
M=1

∫ ∞

−∞
dλaM(λ − sin(q)) ln

(
1 + e−εα

v,M (λ)
)

−
∞∑

M=1

∫ ∞

−∞
dλaM(λ − sin(q)) ln(1 + e−εw,M(λ)), (3.14)

εα
v,K(λ) +

∞∑
Q=1

(
φQK

xv ∗ LQ

)
(λ) = −

∫ π

−π

dq cos(q)aK(sin(q) − λ) ln
(
1 +−εα

y (q)
)

+
∞∑

M=1

(
AMK ∗ Lα

v,M

)
(λ), (3.15)

εα
w,K(λ) = −

∫ π

−π

dq cos(q)aK(sin(q) − λ) ln
(
1 + e−εα

y (q)
)

+
∞∑

M=1

(
AMK ∗ Lα

w,M

)
(λ), (3.16)

where

aK(x) = 1

2π

K/g

(K/2g)2 + x2
, (3.17)

(AMK ∗ L)(x) =
∫ ∞

−∞

dy

2π

d

dx
�MK (2g(x − y)) L(y), (3.18)

�MK(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ

(
x

|K − M|
)

+ 2θ

(
x

|K − M| + 2

)
+ · · ·

+ 2θ

(
x

K + M − 2

)
+ θ
( x

K + M

)
, if K �= M

2θ
(x

2

)
+ 2θ

(x

4

)
+ · · · + 2θ

(
x

2M − 2

)
+ θ
( x

2M

)
, if K = M,

(3.19)

θ(x) = 2 arctan(x). (3.20)

Equations (3.14)–(3.20) should be compared with equations (5.43) and (5.54)–(5.56) in [25]
evaluated at ū ≡ uRef.[25] = 1/2g.

In the following sections we shall derive a set of functional identities (Y-system) satisfied
by the quantities YA = eεA (or = e−εA ). Very importantly, a Y-system is universal in the
sense that it is the same for all the energy states En(L), at least in a relativistic theory [29,
30]. Fugacities as those defined in (3.13) may be removed by a simple redefinition of the Y’s.
Therefore, these are discharged in the next sections.
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4. Y-system for the Hubbard model

The TBA equations for the Hubbard model in universal form are written, for example, in [25]7.
This section is not meant to be particularly original and its aim is to explain how a subset of
the Y-system equations proposed in [37] and in this paper emerges from the Hubbard model.
The TBA equations are as follows:

ln η1(λ) = s ∗ ln(1 + η2)(λ) −
∫ π

−π

dk cos(k)s(λ − sin(k)) ln

(
1 +

1

ζ(k)

)
,

ln η′
1(λ) = s ∗ ln(1 + η′

2)(λ) −
∫ π

−π

dk cos(k)s(λ − sin(k)) ln(1 + ζ(k)),

ln ηn(λ) = s ∗ ln[(1 + ηn−1)(1 + ηn+1)](λ), n = 2, 3, . . . ,

ln η′
n(λ) = s ∗ ln[(1 + η′

n−1)(1 + η′
n+1)](λ), n = 2, 3, . . . , (4.1)

and

ln ζ(k) = − 2

T
cos(k) − 1

T

∫ ∞

−∞
dλs(sin(k) − λ)(4Re

√
1 − (λ − iū)2)

+
∫ ∞

−∞
dys(sin(k) − λ) ln

(
1 + η′

1

1 + η1

)
, (4.2)

where

s(λ) = 1

4ū cosh(πλ/2ū)
(4.3)

is the convolution kernel. s(λ) fulfils the following important property:

s(λ + iū) + s(λ − iū) = δ(λ). (4.4)

Relation (4.4) leads to the following set of functional relations:

ηn(λ + iū)ηn(λ − iū) = (1 + ηn−1(λ))(1 + ηn+1(λ)), (4.5)

η′
n(λ + iū)η′

n(λ − iū) = (1 + η′
n−1(λ))(1 + η′

n+1(λ)), (4.6)

with n = 2, 3, . . .. For n = 1 we have instead

ln[η1(λ + iū)η1(λ − iū)] = ln[(1 + η2)(λ)] −
∫ π

−π

dk cos(k)δ(λ − sin(k)) ln

(
1 +

1

ζ(k)

)
,

ln[η′
1(λ + iū)η′

1(λ − iū)] = ln[(1 + η′
2)(λ)] −

∫ π

−π

dk cos(k)δ(λ − sin(k)) ln(1 + ζ(k)).

But for fixed 0 < λ < 1, the argument of the Dirac δ function vanishes twice, i.e. at
k = arcsin(λ) and k = π − arcsin(λ). This gives

η1(λ + iū)η1(λ − iū) = (1 + η2(λ))

(
1 + 1/ζ(π − k)

1 + 1/ζ(k)

)
, (4.7)

η′
1(λ + iū)η′

1(λ − iū) = (1 + η′
2(λ))

(
1 + ζ(π − k)

1 + ζ(k)

)
. (4.8)

Finally considering that cos(k) = −
√

1 − sin2(k) for π/2 < k < π, we get

ζ +(π − k)ζ−(π − k) ≡ ζ(π − arcsin(λ + iū))ζ(π − arcsin(λ − iū)) =
(

1 + η′
1(λ)

1 + η1(λ)

)
. (4.9)

7 See also [36] for the Y-system and the excited states in a closely related model.

10



J. Phys. A: Math. Theor. 42 (2009) 375401 D Bombardelli et al

b

a

Figure 1. The Hubbard diagram.

From the relation

ζ(π − k) = ζ(k)e4 cos(k)/T (4.10)

(see equation (5.A.2) in [25]) we also have

ζ +(k)ζ−(k) ≡ ζ(arcsin(λ + iū))ζ(arcsin(λ − iū)) =
(

1 + η′
1(λ)

1 + η1(λ)

)
× e

4
T

(
√

1−(sin(k)+iū)2+
√

1−(sin(k)−iū)2). (4.11)

To see the relationship with the Y-system represented in figure 1 of [37], set zi = 1/η′
i :

z1(λ + iū)z1(λ − iū) = (1 + 1/z2(λ))−1

(
1 + ζ(k)

1 + ζ(π − k)

)
, (4.12)

zn(λ + iū)zn(λ − iū) = (1 + 1/zn−1(λ))−1(1 + 1/zn+1(λ))−1, (4.13)

and

Y22(k) = ζ(k), Y11(k) ≡ 1/Y22(π − k) = 1/ζ(π − k), (4.14)

Y1,b+1(λ) = zb(λ), Ya+1,1(λ) = ηa(λ), (4.15)

with a, b = 1, 2, 3, . . . and construct a TBA diagram using the following rules [38]:

• starting from a given node (a, b) the lhs of the Y-system is always Yab(λ + iū)Yab(λ− iū);
• a horizontal link between the nodes (a, b) and (a′, b) corresponds to a factor (1 + Ya′b(λ))

on the rhs;
• a vertical link between (a, b) and (a, b′) corresponds to a factor (1 + 1/Yab′(λ))−1 on the

rhs.

It is easy to check that the diagram represented in figure 1 is reproduced with the exception
of the functional relation (4.11) for Y22(λ(k)) = ζ(k) which would close a ‘standard’ Y-system
diagram only if this extra constraint were true:

η1(λ(k))

η′
1(λ(k))

= e
4
T

(
√

1−(sin(k)+iū)2+
√

1−(sin(k)−iū)2). (4.16)
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This equation certainly holds at T = ∞ and would be compatible with some of the evident
symmetries of the TBA equations but still it would imply a chain of extra constraints (on the
other TBA functions) that we did not try to prove. In fact, we should stress that we have included
the node Y11, which is related to Y22 by (4.14) and (4.10). Therefore, there is no need to show
an extra equation for Y22(λ(k)) = ζ(k)8 once we already have ln Y11(λ(k)) = − ln ζ(π − k)

in the TBA system.

5. Y-system for the AdS/CFT correspondence

Let us start from equation (3.8) and observe that SKM(u) defined in (2.13) are a particular
n → ∞ limit of the Zn-related scattering matrix elements proposed in [39]. They satisfy the
following set of functional relations [27, 40]:

SKM

(
2λ +

i

g

)
SKM

(
2λ − i

g

)
=

∞∏
K ′=1

(SK ′M(2λ))IKK′ e−i2πIKM�(2λ), (5.1)

where INM = δN,M + 1+δN,M−1 and �(u) is the Heaviside step function. Equation (5.1) leads to

φKM
ww

(
λ′ − λ +

i

2g

)
+φKM

ww

(
λ′ − λ − i

2g

)
−

∞∑
K ′=1

IKK ′φK ′M
ww (λ′−λ) = −IKMδ(λ′−λ). (5.2)

Note that φKM
ww (λ) is equal to −AKM(λ) defined in equation (3.18). Another relevant identity is

φK
yw

(
sin(q ′), λ +

i

2g

)
+ φK

yw

(
sin(q ′), λ − i

2g

)
−

∞∑
K ′=1

IKK ′φK ′
yw(sin(q ′), λ)

= −δK1 cos(q ′)δ(sin(q ′) − λ). (5.3)

Using equations (5.2), (5.3) and setting

Yα
w,K(λ) = e−εα

w,K (λ), Y α
y (q) = eεα

y (q), Y α
y∗(q) ≡ eεα

y∗ (q) = e−εα
y (π−q), (5.4)

with q = arcsin(λ), we find

Yα
w,K

(
λ +

i

2g

)
Yα

w,K

(
λ − i

2g

)
=

∞∏
K ′=1

(
1 +

1

Yα
w,K ′(λ)

)−IKK′ (
1 + Yα

y∗(q)

1 + 1/Y α
y (q)

)δK1

. (5.5)

Let us now consider equation (3.7). The identity (B.8) with K = 2, 3, . . . , together with
equations (5.2) and (5.3) leads to

Yα
v,K

(
λ +

i

2g

)
Yα

v,K

(
λ − i

2g

)
=

∞∏
K ′=1

(
1 + Yα

v,K ′(λ)
)IKK′

(
1 +

1

YK+1(p̃)

)−1

, (5.6)

with p̃ = p̃(2λ) defined in (A.10) and Yα
v,K = eεα

v,K . The case with K = 1 is slightly more
tricky, but the strategy is just the same. One starts considering the expression

εα
v1

(
λ +

i

2g

)
+ εα

v1

(
λ − i

2g

)
− εα

v2(λ) − εα
y (q) − εα

y∗(q), (5.7)

with q = arcsin(λ). The corresponding rhs of the TBA equations cancel almost completely
due to the functional relations fulfilled by the kernel functions; they just leave some ‘contact’
delta function contributions. The following identities are useful:

2π iφ1(u, v) = d

du
ln[(x(u) − x(v))(1 − x−1(u)x−1(v))] = 1

u − v
, (5.8)

8 A fortiori, if this equation should not respect the ‘standard’ form of the Y-system.
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2π iφ2(u, v) = d

du
ln

[
x(u) − x(v)

x(u) − x−1(v)

]
=

√
4 − v2

√
4 − u2

1

u − v
, (5.9)

1

2π i

d

du
ln

[
(x(u) − x(v))2

x(u)

]
= φ1(u, v) + φ2(u, v), (5.10)

φQ(u, v) = φ2

(
u − i

Q

g
, v

)
− φ2

(
u + i

Q

g
, v

)
, (5.11)

and also the equation

εα
y (q) + εα

y∗(q) ≡ εα
y (q) − εα

y (π − q) = −
∞∑

Q=1

φQ ∗ LQ(q), (5.12)

analogous to (4.10) for the Hubbard model. The result is

Yα
v,1

(
λ +

i

2g

)
Yα

v,1

(
λ − i

2g

)
= (1 + Yα

v,2(λ)
)(

1 + Yα
y (q)

)
×
(

1 +
1

Yy∗(q)

)−1 (
1 +

1

Y2(p̃)

)−1

. (5.13)

Further, consider the quantity

εy(q
+) + εy(q

−) − εv,1(λ), (5.14)

where q± = arcsin(λ± i/2g); the kernel properties and the TBA equation (3.8) at K = 1 give

Yα
y (q+)Y α

y (q−) = (1 + Yα
v,1(λ)

) (
1 +

1

Yα
w,1(λ)

)−1 (
1 +

1

Y1(p̃)

)−1

, (5.15)

with p̃ = p̃(2λ). Finally, using the property

xQ+(u + i/g)

xQ−(u + i/g)

xQ+(u − i/g)

xQ−(u − i/g)
= x(Q−1)+(u)

x(Q−1)−(u)

x(Q+1)+(u)

x(Q+1)−(u)
, (5.16)

and similar relations for φ
Q′Q
sl(2), φ

Q
yx and φQM

vx (see appendix B), we get

YQ

(
x

(
u +

i

g

))
YQ

(
x

(
u − i

g

))
=

∞∏
Q′=1

(1 + YQ′(x(u)))IQQ′
2∏

α=1

(
1 +

1

Yα
v,Q−1(λ)

)−1

,

(5.17)

with Q = 2, 3, . . . and

Y1

(
x

(
u +

i

g

))
Y1

(
x

(
u − i

g

))
= (1 + Y2(x(u)))

2∏
α=1

(
1 +

1

Yα
y (q)

)−1

, (5.18)

with q = arcsin(λ), u = 2λ and YQ = eεQ . Setting

YQ,0 = YQ, Y1,1 = Y 1
y , Y1,−1 = Y 2

y , Y2,2 = Y 1
y∗ , Y2,−2 = Y 2

y∗ ,

Y1,K+1 = Y 1
w,K, Y1,−K−1 = Y 2

w,K, YK+1,1 = Y 1
v,K, YK+1,−1 = Y 2

v,K, (5.19)

and following the rules given at the end of section 4 we may encode this Y-system in the
diagram shown in figure 2. In other words, equations (5.5)–(5.18) with the identifications
(5.19) can be recast in the compact form:

Y +
a,bY

−
a,b = (1 + Ya+1,b)(1 + Ya−1,b)

(
1 +

1

Ya,b+1

)−1 (
1 +

1

Ya,b−1

)−1

, (5.20)

as long as (a, b) �= (2,±2).
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a

b

Figure 2. The AdS/CFT diagram.

Our Y-diagram shares its structure with that in figure 1 of [37]. Yet, we shall remark the
exact parallel to what we have noted at the end of section 4 about the Hubbard model: to close
completely the diagram by using the ‘standard’ rules, we would need two extra equations:

Yα
y∗(q

+)Y α
y∗(q

−) = (1 + Yα
w,1(λ)

) (
1 +

1

Yα
v,1(λ)

)−1

(α = 1, 2). (5.21)

A careful reader may have noted that we did not prove these equations, since for the nodes
(2,±2) we already have the identification

Yα
2,±2(q) = 1

Yα
1,±1(π − q)

, (5.22)

and thus, at any rate, we do not need to include the associated equations in the TBA system.
A careful analysis suggests that equation (5.21) is in general incorrect.

6. Partial conclusions and remarks

In a nutshell, we have proposed the TBA equations which should control the energy/dimension
spectrum of the AdS5 × S5 correspondence. We have also derived from them the universal
Y-system which should characterize any state of the theory for any value of the coupling
constant g. Of course, since universal, this system contains the information about a specific
state in a much more involved way.

Nevertheless, we may still rely on the massive integrable field theories. In this area a clear
procedure has been established to extract excited-state nonlinear integral equations from that
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of the ground state; this is initially described from three different perspectives in the papers
[29–31]. Essentially, it proves the recipe to extract suitable driving terms

∑
i ln S(ui, u) as

residues of the convolution integrals, and these terms clearly involve the scattering matrix
elements. Under the perspective of the nonlinear integral equation, this idea has been already
applied to some sectors of the asymptotic Beisert–Staudacher equations [41–43].

Re-echoing the title of [44], the Hubbard model excursion seems to be still on in this
discipline. In fact, we have found just two copies of this model, talking through their massive
nodes. Moreover, this is also the structure of the Y-system recently proposed by Gromov,
Kazakov and Viera (somehow on symmetry grounds) [37].

Despite the lack of a BA or integrability description of sufficiently short operators, we
may consider all these arguments in favour of a TBA description of the correspondence.

Note added to the journal version

The (first versions of the) papers [47, 48]9 appeared while we were preparing the present
revised version by adding some specifications in the text and other minor corrections in the
formulae. Those papers’ authors derived independently the TBA equations and the Y-system
by making use of the same methods. After considering some evident typos and the different
parametrizations adopted in the original manuscripts, our main equations match those of [48].
The relationship between the new equations and the Hubbard model is not discussed in [48],
which nevertheless contains, among other results, many interesting comments on the analytic
properties of the Y-functions and a derivation of the universal form of the TBA. For what
concerns [47] the Y-system is consistent with our findings and those of [48] and, apart from
its initial discrepancy in some of the TBA kernels—amended in subsequent versions (cf also
the discussion at the end of section 5 in [48])—the TBA equations coincide with ours as well.
Moreover, [47] starts the discussion on the generalization to particular families of excited
states, along the lines we anticipated in our final section 6.

Finally, the results and final comments of section 5 show the need for careful consideration
of our Y-system—directly stemming from the TBA equations—once the lhs is taken as the
node Y2,±2: strictly speaking the functional relations (5.21) do not hold in these cases. This
suggests, at first sight, a significant difference with the Y-system inferred in [37] on symmetry
grounds. However, from the discussion in the first paragraph after equation (1) in [37], it is
clear that the definition of the Y-system for Y2,±2 is ambiguous there, because of the required
boundary conditions. Thus, this still supports our results and stresses once more the larger
content of information within the TBA integral equations, as already known for relativistic
theories [27]. There are also open issues concerning the analytic continuation of the Y-system
outside the strip, −2 < Re(u) < 2, that may lead to a more serious disagreement with the
proposal of [37]. These have been partially addressed in [48] and need extra work in order to
be fully clarified.
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Appendix A.

Here we report the definitions used for the kernels involved in the TBA equations (3.5)–(3.8):

φ
Q′Q
sl(2)(p̃

′, p̃) = 1

2π i

∂

∂p̃′ ln S
Q′Q
(2) (p̃′, p̃), (A.1)

φQ
xy(p̃, q) = 1

2π i

∂

∂p̃
ln

⎛⎝xQ−(p̃) − y(q)

xQ+(p̃) − y(q)

√
xQ+(p̃)

xQ−(p̃)

⎞⎠ , (A.2)

φQM
xv (p̃, λ) = 1

2π i

∂

∂p̃
ln SQM

xv (p̃, λ), (A.3)

φKQ
vx (λ, p̃) = − 1

2π i

∂

∂λ
ln SQK

xv (p̃, λ), (A.4)

φQ
yx(q, p̃) = 1

2π i

∂

∂q
ln

⎛⎝ y(q) − xQ+(p̃)

y(q) − xQ−(p̃)

√
xQ−(p̃)

xQ+(p̃)

⎞⎠ , (A.5)

φK
yv(q, λ) = φK

yw(q, λ) = 1

2π i

∂

∂q
ln

(
v(q) − 2λ + iK/g

v(q) − 2λ − iK/g

)
, (A.6)

φMK
vv (λ′, λ) = φMK

ww (λ′, λ) = 1

2π i

∂

∂λ′ ln SMK(2λ′ − 2λ), (A.7)

φK
vy(λ, q) = −φK

wy(λ, q) = 1

2π i

∂

∂λ
ln

(
2λ − v(q) + iK/g

2λ − v(q) − iK/g

)
, (A.8)

where we have defined (as in the main text, with the possible omission of the subscript for λ)

xQ±(p̃) = 1

2g

⎛⎝√1 +
4g2

Q2 + p̃2
∓ 1

⎞⎠ (p̃ − iQ) , (A.9)

p̃(u) = ig

2

⎛⎝√4 −
(

u + i
Q

g

)2

−
√

4 −
(

u − i
Q

g

)2
⎞⎠ , (A.10)

y(q) = ie−iq, v(q) = 2 sin(q) = 2λv, w(λ) = 2λw, (A.11)

v±
K(λ) = 2λv ± iK

g
, w±

K(λ) = 2λw ± iK

g
, (A.12)

x(u) = 1

2
(u − i

√
4 − u2), xQ±(u) = x

(
u ± i

Q

g

)
, (A.13)

xQ±(−u) = − 1

xQ∓(u)
, p̃(−u) = −p̃(u). (A.14)
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It is easy to note that some of these kernels depend only on the difference of the rapidities, as
in the relativistic case. They are

φM
vy(λ, q) = −φM

wy(λ, q) = φM(λ − sin(q)), where φM(λ) = 1

2π i

∂

∂λ
ln

(
λ + iM/2g

λ − iM/2g

)
(A.15)

φMK
vv (λ′, λ) = φMK

ww (λ′, λ) = φMK(λ′ − λ), where φMK(λ) = 1

2π i

∂

∂λ
ln SMK(2λ). (A.16)

Appendix B.

Here we want to show how also the other kernels satisfy an identity of type (5.2). As far as
the kernel

φ
QQ′
sl(2)(u, u′) = 1

2π i

∂

∂p̃
ln

⎡⎣( u − u′ + i |Q−Q′|
g

u − u′ − i |Q−Q′|
g

)(
u − u′ + iQ+Q′

g

u − u′ − iQ+Q′
g

)

×
⎡⎣⎛⎝ Q∏

j=1

Q′∏
h=1

1 − 1
x(u+i(Q+2−2j)/g)x(u′+i(Q′−2h)/g)

1 − 1
x(u+i(Q−2j)/g)x(u′+i(Q′+2−2h)/g)

⎞⎠ σQ,Q′(u, u′)

⎤⎦−2

×
min(Q,Q′)−1∏

k=1

(
u − u′ + i |Q−Q′|+2k

g

u − u′ − i |Q−Q′|+2k

g

)2
⎤⎦ (B.1)

is concerned, we may shift on the second variable

φ
QQ′
sl(2)

(
u, u′ +

i

g

)
+ φ

QQ′
sl(2)

(
u, u′ − i

g

)
= 1

2π i

∂

∂p̃

[
ln

(
u − u′ + i |Q−Q′|

g
− i

g

u − u′ − i |Q−Q′|
g

− i
g

)

+ ln

(
u − u′ + iQ+Q′−1

g

u − u′ − iQ+Q′+1
g

)
+ 2

min(Q,Q′−1)−1∑
k=1

ln

(
u − u′ + i |Q−Q′|+2k

g
− i

g

u − u′ − i |Q−Q′|+2k

g
− i

g

)

+ ln

(
u − u′ + i |Q−Q′|

g
+ i

g

u − u′ − i |Q−Q′|
g

+ i
g

)
+ ln

(
u − u′ + iQ+Q′+1

g

u − u′ − iQ+Q′−1
g

)

+ 2
min(Q,Q′+1)−1∑

k=1

ln

(
u − u′ + i |Q−Q′|+2k

g
+ i

g

u − u′ − i |Q−Q′|+2k

g
+ i

g

)
− 2 ln

⎛⎜⎝ 1 − 1

x
(
u− iQ

g

)
x
(
u+i Q′+1

g

)
1 − 1

x
(
u+ iQ

g

)
x
(
u−i Q′−1

g

)
⎞⎟⎠

− 2 ln

⎛⎜⎝1 − 1

x
(
u− iQ

g

)
x
(
u+i Q′−1

g

)
1 − 1

x
(
u+ iQ

g

)
x
(
u−i Q′+1

g

)
⎞⎟⎠

− 2i
∞∑

r=2

∞∑
ν=0

βr,r+1+2ν(g)
[
qQ

r (u)q
Q′+1
r+1+2ν(u

′) − qQ′+1
r (u′)qQ

r+1+2ν(u)

+ qQ
r (u)q

Q′−1
r+1+2ν(u

′) − qQ′−1
r (u′)qQ

r+1+2ν(u)
]]

, (B.2)
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thus proving the identity used in the main text:

φ
QQ′
sl(2)

(
u, u′ +

i

g

)
+ φ

QQ′
sl(2)

(
u, u′ − i

g

)
=

∞∑
Q′′=1

IQ′Q′′φ
QQ′′
sl(2) (u, u′) − δ(u − u′)IQQ′ . (B.3)

Leaving for future consideration the convergence problem of the dressing factor in the mirror
theory, we may still think as possible to define somehow (in a convergent or asymptotic sense)
the bound state charges qQ

r as in [45, 46] and then the shifted charges above as

qQ±1
r (u) = i

r − 1

⎡⎢⎣( 1

x
(
u + i(Q±1)

g

))r−1

−
⎛⎝ 1

x
(
u − i(Q∓1)

g

)
⎞⎠r−1

⎤⎥⎦ . (B.4)

Analogously, by direct computation

φMQ
vx

(
λ, xQ±

(
u +

i

g

))
+ φMQ

vx

(
λ, xQ±

(
u − i

g

))
= − 1

2π i

∂

∂λ

[
ln

(
x(Q−1)− − x

(
v + iM

g

)
x(Q+1)+ − x

(
v + iM

g

) )

+ ln

(
x(Q+1)− − x

(
v − iM

g

)
x(Q−1)+ − x

(
v − iM

g

)) + ln

(
x(Q−1)− − x

(
v − iM

g

)
x(Q+1)+ − x

(
v − iM

g

) ) + ln

(
x(Q+1)+

x(Q−1)−

)

+ ln

(
x(Q−1)+

x(Q+1)−

)
+ ln

(
x(Q+1)− − x

(
v + iM

g

)
x(Q−1)+ − x

(
v + iM

g

)) +
M−1∑
j=1

[
ln

(
u − iQ−1

g
− (v − iM

g

)− 2i
g
j

u + iQ+1
g

− (v + iM
g

)
+ 2i

g
j

)

+ ln

(
u − iQ+1

g
− (v − iM

g

)− 2i
g
j

u + iQ−1
g

− (v + iM
g

)
+ 2i

g
j

)]
(B.5)

(v = 2λ), we may prove an identity with the same form, but involving φMQ
vx ,

φMQ
vx

(
λ, xQ±

(
u +

i

g

))
+ φMQ

vx

(
λ, xQ±

(
u − i

g

))
=

∞∑
Q′=1

IQQ′φMQ′
vx (λ, xQ′

(u)) + δ(λ − u/2)δQ−1,M . (B.6)

An identity with the same form may be derived for φQM
xv :

φQM
xv

(
xQ±(u), λ +

i

2g

)
+ φQM

xv

(
xQ±(u)λ − i

2g

)
= 1

2π i

∂

∂p̃

[
ln

(
xQ− − x

(
v + i(M+1)

g

)
xQ+ − x

(
v + i(M+1)

g

) )

+ ln

(
xQ− − x

(
v − i(M−1)

g

)
xQ+ − x

(
v − i(M−1)

g

) ) + ln

(
xQ− − x

(
v − i(M+1)

g

)
xQ+ − x

(
v − i(M+1)

g

) ) + 2 ln

(
xQ+

xQ−

)

+ ln

(
xQ− − x

(
v + i(M−1)

g

)
xQ+ − x

(
v + i(M−1)

g

) ) +
M−1∑
j=1

[
ln

(
u − iQ

g
− (v − iM−1

g

)− 2i
g
j

u + iQ

g
− (v + iM+1

g

)
+ 2i

g
j

)

+ ln

(
u − iQ

g
− (v − iM+1

g

)− 2i
g
j

u + iQ

g
− (v + iM−1

g

)
+ 2i

g
j

)]
, (B.7)

φQM
xv

(
xQ±(u), λ +

i

2g

)
+ φQM

xv

(
xQ±(u), λ − i

2g

)
=

∞∑
M ′=1

IMM ′φQM ′
xv (xQ(u), λ) + δ(λ − u/2)δQ−1,M . (B.8)

18



J. Phys. A: Math. Theor. 42 (2009) 375401 D Bombardelli et al

References

[1] Bethe H 1931 On the theory of metals: 1. Eigenvalues and eigenfunctions for the linear atomic chain Z.
Phys. 71 205

Yang C N and Yang C P 1966 One-dimensional chain of anisotropic spin-spin interactions: I. Proof of Bethe’s
hypothesis for ground state in a finite system Phys. Rev. 150 321

Yang C N 1967 Some exact results for the many body problems in one dimension with repulsive delta function
interaction Phys. Rev. Lett. 19 1312

Baxter R J 1972 Partition function of the eight-vertex model Ann. Phys. 70 193
Faddeev L D, Sklyanin E K and Takhtajan L A 1980 The quantum inverse problem method. 1 Theor. Math.

Phys. 40 688
Bethe H 1979 Teor. Mat. Fiz. 40 194
Zamolodchikov A B and Zamolodchikov A B 1979 Factorized S-matrices in two dimensions as the exact

solutions of certain relativistic quantum field models Ann. Phys. 120 253
[2] Maldacena J M 1998 The large N limit of superconformal field theories and supergravity Adv. Theor. Math.

Phys. 2 231 (arXiv:hep-th/9711200)
Gubser S S, Klebanov I R and Polyakov A M 1998 Gauge theory correlators from non-critical string theory

Phys. Lett. B428 105 (arXiv:hep-th/9802109)
Witten E 1998 Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253 (arXiv:hep-th/9802150)

[3] Lipatov L N 1993 High-energy asymptotics of multicolor QCD and exactly solvable lattice models
arXiv:hep-th/9311037

Faddeev L D and Korchemsky G P 1995 High-energy QCD as a completely integrable model Phys. Lett.
B 342 311 (arXiv:hep-th/9404173)

[4] Bena I, Polchinski J and Roiban R 2004 Hidden symmetries of the AdS5×S5 superstring Phys. Rev. D 69 046002
(arXiv:hep-th/0305116)

[5] Lipatov L N 1998 Evolution equations in QCD Perspectives in Hadron Physics: Proc. Conf. ICTP (Trieste,
Italy, May 1997) (Singapore: World Scientific)

[6] Minahan J A and Zarembo K 2003 The Bethe ansatz for N = 4 Super Yang–Mills J. High Energy Phys.
JHEP03(2003)013 (arXiv:hep-th/0212208)

[7] Beisert N and Staudacher M 2005 Long-range psu(2,2|4) Bethe ansatze for gauge theory and strings Nucl. Phys.
B 727 1 (arXiv:hep-th/0504190)

[8] Arutyunov G, Frolov S and Staudacher M 2004 Bethe ansatz for quantum strings J. High Energy Phys.
JHEP10(2004)016 (arXiv:hep-th/0406256)

[9] Hernandez R and Lopez E 2006 Quantum corrections to the string Bethe ansatz J. High Energy Phys.
JHEP07(2006)004 (arXiv:hep-th/0603204)

[10] Beisert N, Hernandez R and Lopez E 2006 A crossing-symmetric phase for AdS(5)× S**5 strings J. High
Energy Phys. JHEP11(2006)070 (arXiv:hep-th/0609044)

[11] Beisert N, Eden B and Staudacher M 2007 Transcendentality and crossing J. Stat. Mech. 0701 P021
(arXiv:hep-th/0610251)

[12] Sieg C and Torrielli A 2005 Wrapping interactions and the genus expansion of the 2-point function of composite
operators Nucl. Phys. B 723 3 (arXiv:hep-th/0505071)

[13] Ambjorn J, Janik R A and Kristjansen C 2006 Wrapping interactions and a new source of corrections to the
spin-chain/string duality Nucl. Phys. B 736 288 (arXiv:hep-th/0510171)

[14] Staudacher M 2005 The factorized S-matrix of CFT/AdS J. High Energy Phys. JHEP05(2005)054
(arXiv:hep-th/0412188)

[15] Beisert N 2008 The su(2|2) dynamic S-matrix Adv. Theor. Math. Phys. 12 945 (arXiv:hep-th/0511082)
Martins M J and Melo C S 2007 The Bethe ansatz approach for factorizable centrally extended su(2|2) S-matrices

Nucl. Phys. B 785 246 (arXiv:hep-th/0703086)
[16] Beisert N 2007 The analytic Bethe Ansatz for a chain with centrally extended su(2|2) symmetry J. Stat. Mech.

0701 P017 (arXiv:nlin/0610017)
[17] Luscher M 1986 Volume dependence of the energy spectrum in massive quantum field theories: 1. Stable

particle states Commun. Math. Phys. 104 177
Luscher M 1983 On a relation between finite size effects and elastic scattering processes Lecture given at

Cargese Summer Inst. (Cargese, France, 1–15 Sept.)
[18] Klassen T R and Melzer E 1991 On the relation between scattering amplitudes and finite size mass corrections

in QFT Nucl. Phys. B 362 329
[19] Bajnok Z and Janik R A 2009 Four-loop perturbative Konishi from strings and finite size effects for multiparticle

states Nucl. Phys. B 807 625 (arXiv:0807.0399 [hep-th])

19

http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1103/PhysRev.150.321
http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1016/0003-4916(72)90335-1
http://dx.doi.org/10.1016/0003-4916(79)90391-9
http://www.arxiv.org/abs/hep-th/9711200
http://www.arxiv.org/abs/hep-th/9802109
http://www.arxiv.org/abs/hep-th/9802150
http://www.arxiv.org/abs/hep-th/9311037
http://dx.doi.org/10.1016/0370-2693(94)01363-H
http://www.arxiv.org/abs/hep-th/9404173
http://dx.doi.org/10.1103/PhysRevD.69.046002
http://www.arxiv.org/abs/hep-th/0305116
http://dx.doi.org/10.1088/1126-6708/2003/03/013
http://www.arxiv.org/abs/hep-th/0212208
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.038
http://www.arxiv.org/abs/hep-th/0504190
http://dx.doi.org/10.1088/1126-6708/2004/10/016
http://www.arxiv.org/abs/hep-th/0406256
http://dx.doi.org/10.1088/1126-6708/2006/07/004
http://www.arxiv.org/abs/hep-th/0603204
http://dx.doi.org/10.1088/1126-6708/2006/11/070
http://www.arxiv.org/abs/hep-th/0609044
http://www.arxiv.org/abs/hep-th/0610251
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.011
http://www.arxiv.org/abs/hep-th/0505071
http://dx.doi.org/10.1016/j.nuclphysb.2005.12.007
http://www.arxiv.org/abs/hep-th/0510171
http://dx.doi.org/10.1088/1126-6708/2005/05/054
http://www.arxiv.org/abs/hep-th/0412188
http://www.arxiv.org/abs/hep-th/0511082
http://dx.doi.org/10.1016/j.nuclphysb.2007.05.021
http://www.arxiv.org/abs/hep-th/0703086
http://www.arxiv.org/abs/nlin/0610017
http://dx.doi.org/10.1007/BF01211589
http://dx.doi.org/10.1016/0550-3213(91)90566-G
http://dx.doi.org/10.1016/j.nuclphysb.2008.08.020
http://www.arxiv.org/abs/0807.0399 [hep-th]


J. Phys. A: Math. Theor. 42 (2009) 375401 D Bombardelli et al

Bajnok Z, Janik R A and Lukowski T 2008 Four loop twist two, BFKL, wrapping and strings arXiv:0811.4448
[hep-th]

[20] Fiamberti F, Santambrogio A, Sieg C and Zanon D 2008 Wrapping at four loops in N = 4 SYM Phys. Lett.
B 666 100 (arXiv:0712.3522 [hep-th])

Fiamberti F, Santambrogio A, Sieg C and Zanon D 2008 Anomalous dimension with wrapping at four loops in
N = 4 SYM Nucl. Phys. B 805 231 (arXiv:0806.2095 [hep-th])

[21] Arutyunov G and Frolov S 2009 String hypothesis for the AdS5 × S5 mirror arXiv:0901.1417 [hep-th]
[22] Arutyunov G and Frolov S 2007 On string S-matrix, bound states and TBA J. High Energy Phys.

JHEP12(2007)024 (arXiv:0710.1568 [hep-th])
[23] Yang C N and Yang C F 1969 Thermodynamics of one-dimensional system of bosons with repulsive delta

function interaction J. Math. Phys. 10 1115
[24] Takahashi M 1972 One-dimensional Hubbard model at finite temperature Prog. Theor. Phys. 47 69
[25] Essler F H L, Frahm H, Gohmann F, Klumper A and Korepin V E The One-Dimensional Hubbard Model

(Cambridge: Cambridge University Press)
[26] Zamolodchikov Al B 1990 Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and

Lee–Yang models Nucl. Phys. B 342 695
[27] Zamolodchikov Al B 1991 On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering

theories Phys. Lett. B 253 391
[28] Klassen T R and Melzer E 1991 The thermodynamics of purely elastic scattering theories and conformal

perturbation theory Nucl. Phys. B 350 635
[29] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1997 Quantum field theories in finite volume: excited

state energies Nucl. Phys. B 489 487 (arXiv:hep-th/9607099)
[30] Dorey P and Tateo R 1996 Excited states by analytic continuation of TBA equations Nucl. Phys. B 482 639

(arXiv:hep-th/9607167)
[31] Fioravanti D, Mariottini A, Quattrini E and Ravanini F 1997 Excited state Destri–de Vega equation for sine-

Gordon and restricted sine-Gordon models Phys. Lett. B390 243 (arXiv:hep-th/9608091)
[32] Fendley P 1992 Excited state thermodynamics Nucl. Phys. B 374 667 (arXiv:hep-th/9109021)
[33] Martins M J 1991 Complex excitations in the thermodynamic Bethe ansatz approach Phys. Rev. Lett. 67 419
[34] Fendley P and Intriligator K A 1992 Scattering and thermodynamics of fractionally charged supersymmetric

solitons Nucl. Phys. B 372 533 (arXiv:hep-th/9111014)
[35] Dorey P, Pocklington A and Tateo R 2003 Integrable aspects of the scaling q-state Potts models: II. Finite-size

effects Nucl. Phys. B 661 464 (arXiv:hep-th/0208202)
[36] Juttner G, Klumper A and Suzuki J 1998 From fusion hierarchy to excited state TBA Nucl. Phys. B 512 581

(arXiv:hep-th/9707074)
[37] Gromov N, Kazakov V and Vieira P 2009 Integrability for the full spectrum of planar AdS/CFT arXiv:0901.3753

[hep-th]
[38] Quattrini E, Ravanini F and Tateo R 1993 Integrable QFT in two-dimensions encoded on products of Dynkin

diagrams arXiv:hep-th/9311116
[39] Koberle R and Swieca J A 1979 Factorizable Z(N) models Phys. Lett. B 86 209
[40] Ravanini F, Tateo R and Valleriani A 1993 Dynkin TBAs Int. J. Mod. Phys. A 8 1707 (arXiv:hep-th/9207040)
[41] Fioravanti D and Rossi M 2007 On the commuting charges for the highest dimension SU(2) operator in planar

N = 4 SYM J. High Energy Phys. JHEP08(2007)089 (arXiv:0706.3936 [hep-th])
[42] Freyhult L, Rej A and Staudacher M 2008 A generalized scaling function for AdS/CFT J. Stat.

Mech. 0807 P07015 (arXiv:0712.2743 [hep-th])
[43] Bombardelli D, Fioravanti D and Rossi M 2009 Large spin corrections in N = 4 SYM sl(2): still a linear

integral equation Nucl. Phys. B 810 460 (arXiv:0802.0027 [hep-th])
[44] Feverati G, Fioravanti D, Grinza P and Rossi M 2007 Hubbard’s adventures in N = 4 SYM-land? Some

non-perturbative considerations on finite length operators J. Stat. Mech. 0702 P001 (arXiv:hep-th/0611186)
[45] Roiban R 2007 Magnon bound-state scattering in gauge and string theory J. High Energy Phys.

JHEP04(2007)048 (arXiv:hep-th/0608049)
[46] Chen H Y, Dorey N and Okamura K 2006 On the scattering of magnon boundstates J. High Energy Phys.

JHEP11(2006)035 (arXiv:hep-th/0608047)
[47] Gromov N, Kazakov V, Kozak A and Vieira P 2009 Integrability for the full spectrum of planar AdS/CFT II

(arXiv:0902.4458 [hep-th])
[48] Arutyunov G and Frolov S 2009 Thermodynamic Bethe ansatz for the AdS5 × S5 mirror model J. High Energy

Phys. JHEP05(2009)068 (arXiv:0903.0141 [hep-th])

20

http://www.arxiv.org/abs/0811.4448
http://dx.doi.org/10.1016/j.physletb.2008.06.061
http://www.arxiv.org/abs/0712.3522 [hep-th]
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.014
http://www.arxiv.org/abs/0806.2095 [hep-th]
http://www.arxiv.org/abs/0901.1417
http://dx.doi.org/10.1088/1126-6708/2007/12/024
http://www.arxiv.org/abs/0710.1568 [hep-th]
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1143/PTP.47.69
http://dx.doi.org/10.1016/0550-3213(90)90333-9
http://dx.doi.org/10.1016/0370-2693(91)91737-G
http://dx.doi.org/10.1016/0550-3213(91)90159-U
http://dx.doi.org/10.1016/S0550-3213(97)00022-9
http://www.arxiv.org/abs/hep-th/9607099
http://dx.doi.org/10.1016/S0550-3213(96)00516-0
http://www.arxiv.org/abs/hep-th/9607167
http://www.arxiv.org/abs/hep-th/9608091
http://dx.doi.org/10.1016/0550-3213(92)90404-Y
http://www.arxiv.org/abs/hep-th/9109021
http://dx.doi.org/10.1103/PhysRevLett.67.419
http://dx.doi.org/10.1016/0550-3213(92)90365-I
http://www.arxiv.org/abs/hep-th/9111014
http://dx.doi.org/10.1016/S0550-3213(03)00182-2
http://www.arxiv.org/abs/hep-th/0208202
http://dx.doi.org/10.1016/S0550-3213(97)00772-4
http://www.arxiv.org/abs/hep-th/9707074
http://www.arxiv.org/abs/0901.3753
http://www.arxiv.org/abs/hep-th/9311116
http://dx.doi.org/10.1016/0370-2693(79)90822-0
http://dx.doi.org/10.1142/S0217751X93000709
http://www.arxiv.org/abs/hep-th/9207040
http://dx.doi.org/10.1088/1126-6708/2007/08/089
http://www.arxiv.org/abs/0706.3936 [hep-th]
http://dx.doi.org/10.1088/1742-5468/2008/07/P07015
http://www.arxiv.org/abs/0712.2743 [hep-th]
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.030
http://www.arxiv.org/abs/0802.0027 [hep-th]
http://www.arxiv.org/abs/hep-th/0611186
http://dx.doi.org/10.1088/1126-6708/2007/04/048
http://www.arxiv.org/abs/hep-th/0608049
http://dx.doi.org/10.1088/1126-6708/2006/11/035
http://www.arxiv.org/abs/hep-th/0608047
http://www.arxiv.org/abs/0902.4458 [hep-th]
http://dx.doi.org/10.1088/1126-6708/2009/05/068
http://www.arxiv.org/abs/0903.0141 [hep-th]

	1. A bird's-eye view between integrability and AdS/CFT
	2. The equations for the root densities
	3. The thermodynamic Bethe ansatz equations
	3.1. A comparison with the Hubbard TBA equations

	4. Y-system for the Hubbard model
	5. Y-system for the AdS/CFT correspondence
	6. Partial conclusions and remarks
	Note added to the journal version
	Acknowledgments
	Appendix A. 
	Appendix B. 
	References

